299 research outputs found

    A pilot clinical trial of intravesical mitomycin-C and external deep pelvic hyperthermia for non-muscle-invasive bladder cancer.

    Get PDF
    PURPOSE: This paper aims to evaluate the safety and heating efficiency of external deep pelvic hyperthermia combined with intravesical mitomycin C (MMC) as a novel therapy for non-muscle-invasive bladder cancer (NMIBC). MATERIALS AND METHODS: We enrolled subjects with bacillus Calmette-Guérin (BCG) refractory NMIBC to an early phase clinical trial of external deep pelvic hyperthermia (using a BSD-2000 device) combined with MMC. Bladders were heated to 42 °C for 1 h during intravesical MMC treatment. Treatments were given weekly for 6 weeks, then monthly for 4 months. Heating parameters, treatment toxicity, and clinical outcomes were systematically measured. RESULTS: Fifteen patients were enrolled on the clinical trial. Median age was 66 years and 87% were male. Median European Organisation for Research and Treatment of Cancer (EORTC) recurrence and progression scores were 6 and 8, respectively. The full treatment course was attained in 73% of subjects. Effective bladder heating was possible in all but one patient who could not tolerate the supine position due to lung disease. Adverse events were all minor (grade 2 or less) and no systemic toxicity was observed. The most common adverse effects were Foley catheter pain (40%), abdominal discomfort (33%), chemical cystitis symptoms (27%), and abdominal skin swelling (27%). With a median follow-up of 3.18 years, 67% experienced another bladder cancer recurrence (none were muscle invasive) and 13% experienced an upper tract recurrence. CONCLUSIONS: External deep pelvic hyperthermia using the BSD-2000 device is a safe and reproducible method of heating the bladder in patients undergoing intravesical MMC. The efficacy of this treatment modality should be explored further in clinical trials

    Measuring Tumor Cycling Hypoxia and Angiogenesis Using a Side-firing Fiber Optic Probe

    Get PDF
    Hypoxia and angiogenesis can significantly influence the efficacy of cancer therapy and the behavior of surviving tumor cells. There is a growing demand for technologies to measure tumor hypoxia and angiogenesis temporally in vivo to enable advances in drug development and optimization. This paper reports the use of frequency-domain photon migration with a side-firing probe to quantify tumor oxygenation and hemoglobin concentrations in nude rats bearing human head/neck tumors administered with carbogen gas, cycling hypoxic gas or just room air. Significant increase (with carbogen gas breathing) or decrease (with hypoxic gas breathing) in tumor oxygenation was observed. The trend in tumor oxygenation during forced cycling hypoxia (CH) followed that of the blood oxygenation measured with a pulse oximeter. Natural CH was also observed in rats under room air. The studies demonstrated the potential of the technology for longitudinal monitoring of tumor CH during tumor growth or in response to therapy

    Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity

    Get PDF
    SummaryWe have previously shown that radiation increases HIF-1 activity in tumors, causing significant radioprotection of the tumor vasculature. The impact that HIF-1 activation has on overall tumor radiosensitivity, however, is unknown. We reveal here that HIF-1 plays an important role in determining tumor radioresponsiveness through regulating four distinct processes. By promoting ATP metabolism, proliferation, and p53 activation, HIF-1 has a radiosensitizing effect on tumors. Through stimulating endothelial cell survival, HIF-1 promotes tumor radioresistance. As a result, the net effect of HIF-1 blockade on tumor radioresponsiveness is highly dependent on treatment sequencing, with “radiation first” strategies being significantly more effective than the alternative. These data provide a strong rationale for pursuing sequence-specific combinations of HIF-1 blockade and conventional therapeutics

    Structural Adaptation and Heterogeneity of Normal and Tumor Microvascular Networks

    Get PDF
    Relative to normal tissues, tumor microcirculation exhibits high structural and functional heterogeneity leading to hypoxic regions and impairing treatment efficacy. Here, computational simulations of blood vessel structural adaptation are used to explore the hypothesis that abnormal adaptive responses to local hemodynamic and metabolic stimuli contribute to aberrant morphological and hemodynamic characteristics of tumor microcirculation. Topology, vascular diameter, length, and red blood cell velocity of normal mesenteric and tumor vascular networks were recorded by intravital microscopy. Computational models were used to estimate hemodynamics and oxygen distribution and to simulate vascular diameter adaptation in response to hemodynamic, metabolic and conducted stimuli. The assumed sensitivity to hemodynamic and conducted signals, the vascular growth tendency, and the random variability of vascular responses were altered to simulate ‘normal’ and ‘tumor’ adaptation modes. The heterogeneous properties of vascular networks were characterized by diameter mismatch at vascular branch points (d3var) and deficit of oxygen delivery relative to demand (O2def). In the tumor, d3var and O2def were higher (0.404 and 0.182) than in normal networks (0.278 and 0.099). Simulated remodeling of the tumor network with ‘normal’ parameters gave low values (0.288 and 0.099). Conversely, normal networks attained tumor-like characteristics (0.41 and 0.179) upon adaptation with ‘tumor’ parameters, including low conducted sensitivity, increased growth tendency, and elevated random biological variability. It is concluded that the deviant properties of tumor microcirculation may result largely from defective structural adaptation, including strongly reduced responses to conducted stimuli

    Thermal dosimetry characteristics of deep regional heating of non-muscle invasive bladder cancer.

    Get PDF
    PURPOSE: The aim of this paper is to report thermal dosimetry characteristics of external deep regional pelvic hyperthermia combined with intravesical mitomycin C (MMC) for treating bladder cancer following transurethral resection of bladder tumour, and to use thermal data to evaluate reliability of delivering the prescribed hyperthermia dose to bladder tissue. MATERIALS AND METHODS: A total of 14 patients were treated with MMC and deep regional hyperthermia (BSD-2000, Sigma Ellipse or Sigma 60). The hyperthermia objective was 42° ± 2 °C to bladder tissue for ≥40 min per treatment. Temperatures were monitored with thermistor probes and recorded values were used to calculate thermal dose and evaluate treatment. Anatomical characteristics were examined for possible correlations with heating. RESULTS: Combined with BSD-2000 standard treatment planning and patient feedback, real-time temperature monitoring allowed thermal steering of heat sufficient to attain the prescribed thermal dose to bladder tissue within patient tolerance in 91.6% of treatments. Mean treatment time for bladder tissue \u3e40 °C was 61.9 ± 11.4 min and mean thermal dose was 21.3 ± 16.5 CEM43. Average thermal doses obtained in normal tissues were 1.6 ± 1.2 CEM43 for the rectum and 0.8 ± 1.3 CEM43 in superficial normal tissues. No significant correlation was seen between patient anatomical characteristics and thermal dose achieved in bladder tissue. CONCLUSIONS: This study demonstrates that a hyperthermia prescription of 42° ± 2 °C for 40-60 min can be delivered safely to bladder tissue with external radiofrequency phased array applicators for a typical range of patient sizes. Using the available thermometry and treatment planning, the BSD-2000 hyperthermia system was shown to be an effective method of focusing heat regionally around the bladder with good patient tolerance

    Endothelial cell-surface tissue transglutaminase inhibits neutrophil adhesion by binding and releasing nitric oxide

    Get PDF
    Nitric oxide (NO) produced by endothelial cells in response to cytokines displays anti-inflammatory activity by preventing the adherence, migration and activation of neutrophils. The molecular mechanism by which NO operates at the blood-endothelium interface to exert anti-inflammatory properties is largely unknown. Here we show that on endothelial surfaces, NO is associated with the sulfhydryl-rich protein tissue transglutaminase (TG2), thereby endowing the membrane surfaces with anti-inflammatory properties. We find that tumor necrosis factor-α-stimulated neutrophil adherence is opposed by TG2 molecules that are bound to the endothelial surface. Alkylation of cysteine residues in TG2 or inhibition of endothelial NO synthesis renders the surface-bound TG2 inactive, whereas specific, high affinity binding of S-nitrosylated TG2 (SNO-TG2) to endothelial surfaces restores the anti-inflammatory properties of the endothelium, and reconstitutes the activity of endothelial-derived NO. We also show that SNO-TG2 is present in healthy tissues and that it forms on the membranes of shear-activated endothelial cells. Thus, the anti-inflammatory mechanism that prevents neutrophils from adhering to endothelial cells is identified with TG2 S-nitrosylation at the endothelial cell-blood interface

    Differential response to exercise in claudin-low breast cancer

    Get PDF
    Exposure to exercise following a breast cancer diagnosis is associated with reductions in the risk of recurrence. However, it is not known whether breast cancers within the same molecular-intrinsic subtype respond differently to exercise. Syngeneic mouse models of claudin-low breast cancer (i.e., EO771, 4TO7, and C3(1)SV40Tag-p16-luc) were allocated to a uniform endurance exercise treatment dose (forced treadmill exercise) or sham-exercise (stationary treadmill). Compared to sham-controls, endurance exercise treatment differentially affected tumor growth rate: 1- slowed (EO771), 2- accelerated (C3(1)SV40Tag-p16-luc), or 3- was not affected (4TO7). Differential sensitivity of the three tumor lines to exercise was paralleled by effects on intratumoral Ki-67, Hif1-α, and metabolic programming. Inhibition of Hif1-α synthesis by the cardiac glycoside, digoxin, completely abrogated exercise-accelerated tumor growth in C3(1)SV40Tag-p16-luc. These results suggest that intratumoral Hif1-α expression is an important determinant of claudin-low breast cancer adaptation to exercise treatment

    Flaxseed-Derived Enterolactone Is Inversely Associated with Tumor Cell Proliferation in Men with Localized Prostate Cancer

    Full text link
    Enterolactone and enterodiol, mammalian lignans derived from dietary sources such as flaxseed, sesame seeds, kale, broccoli, and apricots, may impede tumor proliferation by inhibiting activation of nuclear factor kappa B (NF?B) and vascular endothelial growth factor (VEGF). We examined the associations between urinary enterolactone and enterodiol with prostatic tumor expression of NF?B, VEGF, and Ki67 among 147 patients with prostate cancer who participated in a presurgical trial of flaxseed supplementation (30?g/day) for ?30 days. Urinary enterolignans and tissue biomarkers were determined by high-performance liquid chromatography and immunohistochemistry, respectively. After supplementation, we observed significant correlations between intakes of plant lignan and urinary concentrations of total enterolignans (?=0.677, P<.0001), enterolactone (?=0.676, P<.0001), and enterodiol (?=0.628, P<.0001). Importantly, we observed that total urinary enterolignans and enterolactone were significantly and inversely correlated with Ki67 in the tumor tissue (?=?0.217, P=.011, and ?=?0.230, P=.007, respectively), and a near-significant inverse association was observed for enterodiol (?=?0.159, P=.064). An inverse association was observed between enterolactone and VEGF (?=?0.143, P=.141), although this did not reach statistical significance. We did not observe an association between enterolignans and NF?B. In conclusion, flaxseed-derived enterolignans may hinder cancer cell proliferation via VEGF-associated pathways.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140111/1/jmf.2012.0159.pd

    Elevated CAIX Expression is Associated with an Increased Risk of Distant Failure in Early-Stage Cervical Cancer

    Get PDF
    Tumor hypoxia is associated with adverse outcome in many malignancies. The goal of this study was to determine if elevated expression of carbonic anhydrase IX (CAIX), a biomarker of hypoxia, predicts for recurrence in early-stage cervical cancer. The charts of all patients with early-stage cervical cancer, primarily FIGO IB, treated by radical hysterectomy at our institution from 1988–2001 were reviewed. Adequate pathologic specimens from patients who recurred or who had at least three years follow-up and remained disease-free were stained for CAIX. An immunohistochemical score (IHC) was generated from the extent/intensity of staining. Outcome, as measured by freedom from recurrence (FFR), distant metastases (FFDM) and local recurrence (FFLR), was analyzed as a function of age, IHC, lymph node status (LN) and histology. Forty-two relapsing patients and 76 non-relapsing patients were evaluated. In univariate analysis, +LN, though not IHC or histology, was a significant predictor of any recurrence. Both +LN and higher IHC were associated with decreased FFDM but not FFLR. Patients with both +LN and elevated IHC more frequently exhibited distant metastases as first site of failure (5-year FFDM 50%) than patients with only +LN, elevated IHC or neither feature (70, 85 and 95%, respectively, p = 0.0004). In multivariable analysis, only +LN was significantly associated with poorer FFDM (hazard ratio 4.6, p = 0.0015) though there was a strong trend with elevated CAIX expression (p = 0.069). Elevated CAIX expression is associated with more frequent distant metastases in early-stage cervical cancer, suggesting that patients with this characteristic may benefit from more aggressive treatment

    Her2/neu signaling blockade improves tumor oxygenation in a multifactorial fashion in Her2/neu+ tumors

    Get PDF
    Tumor hypoxia reduces the efficacy of radiation and chemotherapy as well as altering gene expression that promotes cell survival and metastasis. The growth factor receptor, Her2/neu, is overexpressed in 25–30% of breast tumors. Tumors that are Her2+ may have an altered state of oxygenation, relative to Her2−tumors, due to differences in tumor growth rate and angiogenesis
    corecore